1	2	3	4	5	Total

90 minutes

Name Surname: \qquad Student No: \qquad Lecturer: \qquad

Calculators are allowed but not their exchange. Each question is worth 20 points Take $g=9,80 \mathrm{~m} / \mathrm{s}^{2}$. Good luck.

1. The two vectors are given by $\vec{a}=3 \hat{\imath}+5 \hat{\jmath}$ and $\vec{b}=2 \hat{\imath}+4 \hat{\jmath}$ in three dimensional cartesian coordinate system. Find
a) the length of $2 \vec{a}-3 \vec{b}$,
b) $2 \vec{a} \cdot 3 \vec{b}$,
c) the angle ϕ between the vectors \vec{a} and \vec{b}, and
d) the component of \vec{a} along the direction of \vec{b}.

5pt a)

$$
\left.\begin{array}{c}
2 \vec{a}=6 \hat{i}+10 \hat{\gamma} \\
-3 \vec{b}=-6 \hat{i}-12 \hat{j}
\end{array}\right\} \begin{array}{r}
2 \vec{a}-3 \vec{b}=-2 \hat{j} \\
|2 \vec{a}-3 \vec{b}|=2
\end{array}
$$

Sot b)

$$
\begin{aligned}
& 2 \vec{a}=6 \hat{i}+10 \hat{\jmath} \quad 2 \vec{a} \cdot 3 \vec{b}=36+120=15611 \\
& 3 \vec{b}=6 \hat{i}+12 \hat{\jmath}
\end{aligned}
$$

Sot c)

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=a b \cos \phi \\
& \phi=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{a b}\right)=\cos ^{-1}\left(\frac{26}{5.84 \times 4 \cdot 47}\right)=\cos ^{-1}(0.997)=4.4^{\circ} \\
& \vec{a} \cdot \frac{\vec{b}}{b}=a \cos \phi=\frac{\vec{a} \cdot \vec{b}}{b}=\frac{2.6}{\sqrt{2^{2}+4^{2}}}=5.81
\end{aligned}
$$

2. A plane, diving with constant speed at an angle of 53.0° with the vertical, releases a projectile at an altitude of $h=1000 \mathrm{~m}$. The projectile hits the ground 4.0 s after release.
a) What is the speed of the plane?
b) How far does the projectile travel horizontally (D) during its flight?
c) What are the horizontal and vertical components of its velocity just before striking the ground?

$$
\begin{aligned}
& \theta=53^{\circ} \\
& h=1000 \mathrm{~m} \\
& t_{A}=4 \mathrm{~s} .
\end{aligned}
$$

(a)

$$
\begin{aligned}
& t=t_{1} l_{d x} \quad y=0 \\
& y=y_{0}-V_{0 y} t-\frac{1}{2} \rho t^{2} \\
& 0=1000-U_{x y} \cdot 4^{2}-\frac{1}{2}(9,8)(4)^{2} \\
& 1000=4 U_{0 y}+\frac{1}{2}(\rho, 8) \cdot 4^{2} \Rightarrow V_{0 y}=250-249,8 \\
& 250 \\
& U_{0 y}=230,4 \mathrm{~m} / \mathrm{s} \\
& U_{0 y}=U_{0} \cos \theta_{0} \Rightarrow U_{0}=\frac{U_{0 y}}{\cos \theta-}=\frac{230,4}{0,6} \\
& V_{0}=384 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b)

$$
D=1228,8 \mathrm{~m}
$$

$$
\text { (5) } \begin{aligned}
& V_{x}=V_{0 x}=V_{0} \sin 53=384.08=307,2 \mathrm{~m} / \mathrm{s} \\
& V_{y}=-V_{0 y}-\rho t=-230,4-9,8.4=269,6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. Boxes A and B are connected to each end of a light vertical rope. A constant upward force $\mathrm{F}=80.0 \mathrm{~N}$ is applied to box A. Starting from rest, box B goes down 12.0 m in 4.00 s . The tension in the rope connecting the two boxes is 36.0 N . What are the masses of box B and box A ?

Solution of 3:
$v_{0}=0$
$\mathrm{s}=12 \mathrm{~m}$
$\mathrm{t}=4 \mathrm{~s} s=v_{0} t+\frac{1}{2} a t^{2} \quad s=\frac{1}{2} a t^{2}$
$a=\frac{2 s}{t^{2}}=\frac{2 \cdot 12 m}{(4 s)^{2}}=1.5 \frac{m}{s^{2}} \quad$ (6 puan)

$\left(m_{a} g+T\right)-F=m_{a} a$
$m_{a}=\frac{F-T}{g-a}=\frac{80 \mathrm{~N}-36 \mathrm{~N}}{9.8 \frac{m}{s^{2}}-1.5 \frac{m}{s^{2}}}=5.30 \mathrm{~kg}$
4. In the figure, block $m_{1}(20.0 \mathrm{~kg})$ is placed on an inclined surface where α is 53°. The coefficient of kinetic friction $\left(\mu_{k}\right)$ between the block m_{1} and the incline is 0.40 . What must be the mass m_{2} of the hanging block if it goes down 12.0 m in the first 3.0 s after the system is released from rest? Draw a free body diagram for each block and calculate the tension in the rope.

A. 5

$$
\begin{aligned}
& y=y_{0}+16 t+\frac{1}{2} a t^{2} \\
& y-y_{0}=\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
\begin{array}{r}
a=\frac{2\left(y-y_{0}\right)}{t^{2}}=\frac{2.12}{3^{2}}=2.67 \mathrm{~m} / \mathrm{s}^{2} \\
a=2.67 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

$$
a_{1}=2,67 \mathrm{~m} / \mathrm{s}^{2}
$$

m_{1} :

$$
\begin{array}{r}
f_{k}=\mu_{k} n \Rightarrow f_{k}=(0.40)(117.6)=47.04 \mathrm{~N} \\
f k=47.04 \mathrm{~N}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\sum \frac{F_{x}}{T}=m_{1} a_{x} \\
f_{k}-m_{1} g \sin 53=m_{1} a
\end{array} \\
& T=f k+m, g \sin 53+m, a \Rightarrow T=47.04+20.9,8 \sin 53 \\
& +20.2 .67 \\
& T=47.04+156.8+53.4 \\
& T=257_{1} 24_{1} N \\
& m_{2}: \\
& \sum F_{y}=m_{a y} \quad m_{2} g-T=m_{2} a \quad m_{2}=\frac{T}{9-a}=\frac{257.24}{9.8-2,67} \\
& m_{2}=\frac{257.24}{7.13}=36.07 \mathrm{~kg}
\end{aligned}
$$

5. A particle revolves in a horizontal circle of radius 2.00 m . At a particular instant, its acceleration is $1.00 \mathrm{~m} / \mathrm{s}^{2}$ in a direction that makes an angle of 30.0° to its direction of motion. Assume that the magnitude of the tangential acceleration is constant. Determine its speed (a) at this moment, and (b) 1.00 s later.

$$
a_{1}=\frac{v^{2}}{R}
$$

$$
v^{2}=R a_{1}=2.0 .5=1
$$

$$
v=1.0 \mathrm{mls}
$$

$$
\Delta v=v(t=1,0)=v(t+0,0, s)+\Delta t
$$

