1	2	3	4	5	Total

Name Surname: \qquad Student No: \qquad Lecturer: \qquad

Calculators are allowed but not their exchange. Each question is worth 20 points Take $g=9,80 \mathrm{~m} / \mathrm{s}^{2}$. Good luck.

1. Vector \vec{a} lies in the $y z$ plane 63° from the positive direction of the y axis, has a positive z component, and has magnitude 3.20 units. Vector \vec{b} lies in the oz plane 48° from the positive direction of the x axis, has a positive z component, and has magnitude 1.40 units. Find;
(a) $\vec{a} \cdot \vec{b}$,
(b) $\vec{a} \times \vec{b}$, and
(c) the angle between \vec{a} and \vec{b}

$$
a_{x}=0
$$

$$
a_{y}=3.2 \cos 63=1.45
$$

$$
\begin{aligned}
& \vec{b} \text { on } x z \\
& b_{x}=1,4, \cos 4,8=0.94 \\
& b_{y}=0 \\
& b_{z}=1,4, \sin 4,8=1.04
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{c_{0}} \cdot \vec{b}=a_{x} b_{*}+a_{y} b_{y}+a_{z} b_{z}=2.97 \\
& \left.|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}=3.2\right\} \quad \theta=\cos ^{-1}\left(\frac{2.97}{3.2 x) \cdot 4}\right) \\
& |\vec{b}|=1.4 \\
& \vec{a} \times \vec{b}=1.5 \hat{\imath}+2.6 \hat{\jmath}-1.36 \hat{k}
\end{aligned}
$$

2. The one-dimensional motion of a particle is plotted in Figure.
a) What is the average acceleration in the intervals: $A B, B C$, and $C E$?
b) How far is the particle from its starting point after 10 s ?
c) Sketch the displacement of the particle as a function of time; label the instants A, B, C, D, and E on your figure.
d) At what time is the particle traveling most slowly?

We can use the definition of average acceleration $\left(a_{\mathrm{zv}}=\Delta v / \Delta t\right)$ to find a_{xv} for the three intervals of constant acceleration shown on the graph.
(a) Using the definition of average acceleration, find a_{av} for the interval

$$
a_{\mathrm{av}, \mathrm{AB}}=\frac{15 \mathrm{~m} / \mathrm{s}-5 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}}=3.33 \mathrm{~m} / \mathrm{s}^{2}
$$ AB :

Find a_{uv} for the interval BC :

$$
\begin{aligned}
& a_{\mathrm{xv}, \mathrm{BC}}=\frac{15 \mathrm{~m} / \mathrm{s}-15 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}}=0 \\
& a_{\mathrm{av}, \mathrm{CE}}=\frac{-15 \mathrm{~m} / \mathrm{s}-15 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}=-7.50 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Find a_{av} for the interval CE:
(b) Use the formulas for the areas of trapezoids and triangles to find the area under the graph of v as a function of t.

$$
\begin{aligned}
\Delta x & =(\Delta x)_{A \rightarrow B}+(\Delta x)_{B \rightarrow \mathrm{C}}+(\Delta x)_{\mathrm{C} \rightarrow \mathrm{D}}+(\Delta x)_{\mathrm{D} \rightarrow \mathrm{E}} \\
& =\frac{1}{2}(5 \mathrm{~m} / \mathrm{s}+15 \mathrm{~m} / \mathrm{s})(3 \mathrm{~s})+(15 \mathrm{~m} / \mathrm{s})(3 \mathrm{~s})+\frac{1}{2}(15 \mathrm{~m} / \mathrm{s})(2 \mathrm{~s})+\frac{1}{2}(-15 \mathrm{~m} / \mathrm{s})(2 \mathrm{~s}) \\
& =75.0 \mathrm{~m}
\end{aligned}
$$

(c) The graph of displacement, x, as a function of time, t, is shown in the following figure. In the region from B to C the velocity is constant so the x-versus- t curve is a straight line.

(d) Reading directly from the figure, we can find the time when the particle is moving the slowest.

At point $\mathrm{D}, t=8 \mathrm{~s}$, the graph crosses the time axis; therefore, $v=0$.
3. A hot air balloon is ascending with a constant speed of $10 \mathrm{~m} / \mathrm{s}$ in air (where air resistance is negligible). A passenger in the balloon has noticed a truck moving with a constant speed $\boldsymbol{u}_{\text {truck }}$ relative to the ground when the passenger is at the position shown in the figure. The passenger has thrown a ball horizontally with a speed of $20 \mathrm{~m} / \mathrm{s}$ in the direction of the truck's motion relative to the balloon. If the ball lands at point K on the truck, what is the magnitude of the truck's speed in m / s ?

when the boll reach the max. heiph

$$
\begin{aligned}
& v_{y}=v_{0 y}-g t_{1}=0, t_{1}=\text { time to reach the max. height } \\
& t_{t}=\frac{v_{0 y}}{g}=\frac{10 \mathrm{~m} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.0 \mathrm{~s}
\end{aligned}
$$

the time required for the boll en to com bock to the initial height is $2 t_{1}=2 \mathrm{~s}$
Now the has an initiated velocity in $-y$ direction. So,

$$
\begin{aligned}
& y_{t}-y_{i}=v_{0 y} t_{2}-\frac{1}{2} g t_{2}{ }^{2} \\
& (0-75 \mathrm{~m})=(-10 \mathrm{~m} / \mathrm{s}) t_{2}-\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t_{2}{ }^{2} \\
& 4.9 t_{2}{ }^{2}+10 t_{2}-75=0 \quad\left\{\begin{array}{l}
\mathrm{recoll} \\
\alpha x^{2}+ \\
x=-6
\end{array}\right. \\
& t_{2}=\frac{-10 \pm \sqrt{100-(19.6)(-75)}}{9.8} \\
& t_{2}=3.0 \mathrm{~s}
\end{aligned}
$$

total time for the bell to move in air is $t_{\text {told }}=2 t_{6}+t_{2}=2.0 \mathrm{~s}+3.0 \mathrm{~s}$ $=5.0 \mathrm{~s}$
Bull takes $\Delta x=U_{\text {ox }} t=(20 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s})=100 \mathrm{~m}$ in horizened direcmen in 5 s
Then the truck has to take 150 m in total in 5 s .
so, $\Delta x=v_{\text {tace }} t_{\text {rom }} \Rightarrow v_{\text {trace }}=\frac{\Delta x}{t_{\text {rom }}}=\frac{150 \mathrm{~m}}{5 \mathrm{~s}}=30 \mathrm{~m} / \mathrm{s}$
4. A net force along the x-axis that has x-component $F_{x}=-12 \mathrm{~N}+\left(0.500 \mathrm{~N} / \mathrm{m}^{2}\right) x^{2}$ is applied to a $2.00-\mathrm{kg}$ object that is initially at the origin and moving in the x-direction with a speed of $10.00 \mathrm{~m} / \mathrm{s}$. What is the speed of the object when it reaches the point $x=6.00 \mathrm{~m}$?

Solution
The force does work on the object, which changes its kinetic energy, so the work-energy theorem applies.
I Note: The force is variable so bade must integrate to calculate the work it does on the object (work-enery theorem)

$$
W_{\text {total }}=\Delta K=K_{f}-K_{i}
$$

(writing integration)

$$
\begin{aligned}
& 3 \text { pear } \\
& \begin{array}{l}
\int_{x_{1}}^{x_{2}} F(x) d x=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \quad 3 \text { yuan } \\
\int_{x_{i}=0}^{x_{f}=6}\left[-12+(0,5) x^{2}\right) d x=\frac{1}{2} \cdot 2 v_{f}^{2}-\frac{1}{2} \cdot 2(10)^{2}
\end{array} \\
& {\left[-12 x+0.5 \frac{x^{3}}{3}\right]_{x_{i}=0 m}^{x=6 m}=\theta_{f}^{2}-100\left(\mathrm{~kg} \frac{m^{2}}{5^{2}}\right)} \\
& (-12)(6)+(0,5)(6)^{3}=v_{f}^{2}-100 \\
& -72+36=v_{f}^{2}-100 \\
& \Rightarrow v f_{f}^{2}=64 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

At least At least end
at the end $\binom{$ do not forget! }{ to use unit! } bixim: I puan
5. Consider two stacked blocks one on top of the other. The bottom block has mass 3 m and rests on a horizontal floor. The top block has mass m. Suppose the coefficient of static and kinetic friction between all the surfaces are μ_{s} and μ_{k}, respectively. Find the maximum value of the magnitude of force $\overrightarrow{\boldsymbol{F}}$ with which the lower block can be pulled horizontally so that the two blocks move together without slipping?

Bloke. m: $\quad f_{s}=m a_{1}$
Block 3m:

$$
N_{1}-m g=0
$$

$$
\begin{aligned}
& F-f_{s}-f_{k}=3 m_{2} \\
& N_{2}-N_{1}-3 m_{g}=0
\end{aligned}
$$

Since blocks move together, they hove same acreleretien

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=a_{2}=a \\
f_{s} \leq \mu_{s} N_{1} \quad f_{k}=\mu_{k} N_{2}=\mu_{k}\left(N_{1}+3 m g\right)
\end{array} \quad=\mu_{k}(m g+3 m g) \\
& =4 \mu_{k} m g \\
& F-m_{1} a-4 \mu_{k} m g=3 m a \quad a=\frac{f-4 \mu_{k m g}}{4 m} \\
& m a=f s \leq N_{s} N_{1} \\
& m\left(\frac{F-4 N_{k} m g}{4 m} \leq \mu_{s} m g \quad\right.
\end{aligned}
$$

