T.C. GEBZE TECHNICAL UNIVERSITY PHYSICS DEPARTMENT

PHYSICS LABORATORY II EXPERIMENT REPORT

THE NAME OF THE EXPERIMENT

Magnetic moment of a conducting loop in the magnetic field

GEBZE TEKNİK ÜNİVERSİTESİ

PREPARED BY

NAME AND SURNAME:	
STUDENT NUMBER:	
DEPARTMENT:	
GROUP NO:	
TEACHING ASSISTANT:	
DATE OF THE EXPERIMENT	://
DATE	: / /

Experiment Setup:

The experimental setup is shown below at Figure 7.4.

Figure 7.4: Magnetic moment of a conducting loop in the magnetic field experimental setup

Experimental Procedure:

- **1.** Make sure the power supplies are turned off.
- 2. Set multimeters to DC / Ampere mode.
- **3.** Plug in the halogen lamp's power supply.
- **4.** Make sure the light falls on the ruler.
- 5. Measure the distance between the ruler and the mirror. (L = 60 cm)
- **6.** Switch on the power supply connected to the Helmholtz coils.
- 7. You can check the polarity of the current using the pole switch.
- **8.** Set the Helmholtz current (I_H) by using power supply connected to the Helmholtz coils. Keep the current constant during the experiment.
- **9.** Adjust the position of the light on the ruler to be $x_0 = 50$ cm.
- **10.** Turn on the power supply to which the rectangular loop is connected.
- 11. Set the current (I_L) on rectangular loop by using the power supply connected to the loop. Wait for the light falling on the ruler to stabilize.
- 12. Read the deviations x_1 and x_2 , where the light falls on the ruler.
- 13. Calculate the angular deviations, $\left[\alpha_{avg} = \frac{|x_1 x_2|}{2L}\right]$, and the magnetic torques via Equation 7.11, $[\tau = D\alpha_{avg}]$.
- **14.** Afterwards, repeat the same steps by keeping the current applied to the rectangular loop (I_L) constant, read the deviations x_1 and x_2 by scanning the current (I_H) applied to the Helmholtz coils.

Table 7.1: $I_H = 0.50 A$; $D = 3.9 \times 10^{-4} \text{ N·m/rad}$; L = 60 cm

$I_L(A)$	x_1 (cm)	x_2 (cm)	$\alpha_{avg} = \frac{ x_1 - x_2 }{2L} \ (rad)$	$\tau = D\alpha_{avg} (N \cdot m)$
0.05				
0.10				
0.15				
0.20				

Table 7.2: $I_H = 1.00 A$; $D = 3.9 \times 10^{-4} \text{ N·m/rad}$; L = 60 cm

$I_L(A)$	x_1 (cm)	x_2 (cm)	$\alpha_{avg} = \frac{ x_1 - x_2 }{2L} \ (rad)$	$\tau = D\alpha_{avg} (N \cdot m)$
0.05				
0.10				
0.15				
0.20				

Table 7.3: $I_L = 0.05 A$; $D = 3.9 \times 10^{-4} \text{ N·m/rad}$; L = 60 cm

I_H (A)	x_1 (cm)	x_2 (cm)	$\alpha_{avg} = \frac{ x_1 - x_2 }{2L} \ (rad)$	$\tau = D\alpha_{avg} (N \cdot m)$
0.50				
1.00				
1.50				
2.00				

Table 7.4: $I_L = 0.10 A$; $D = 3.9 \times 10^{-4} \text{ N} \cdot \text{m/rad}$; L = 60 cm

I_H (A)	x_1 (cm)	x_2 (cm)	$\alpha_{avg} = \frac{ x_1 - x_2 }{2L} \ (rad)$	$\tau = D\alpha_{avg} (N \cdot m)$
0.50				
1.00				
1.50				
2.00				

Calculations and Analysis:

In the experiment, the magnetic torque τ_{mag} is measured depending on the current. The current passing through the Helmholtz coils will cause the magnetic field, which induces a torque on the current loop, that causes it to rotate. As the loop is attached to a vertically pinched wire of finite torsional stiffness, magnetic torque τ_{mag} is balanced by an elastic torque τ_{el} With the help of this balance, the effects of the current passing through the rectangular loop and Helmholtz coils on the magnetic torque will be analyzed.

I. Torque as a function of the current in the rectangular loop:

According to equation $\vec{\tau} = \vec{\mu} \times \vec{B}$ where $\vec{\mu} = NI_L\vec{A}$, the magnetic torque is directly proportional to the current on the conducting rectangular loop $\tau \propto I_L$. Hence, We expect a line in the form of y = mx, where m is the slope of the line, passing through those points and the origin. Use τ and I_L columns of Tables 7.1–2 and calculate the slopes of the lines by means of the statistical linear fitting method called "least squares method" its formulae are given below.

i) $I_{\rm H}$ =0.50 A

$$\begin{split} \sum_{i=1}^k I_{L_i} \, \tau_i &= \\ \sum_{i=1}^k I_{L_i} \, \tau_i &= \\ \sum_{i=1}^k I_{L_i}^2 \, \tau_i &= \\ \sum_{i=1}^k I_{L_i}^2 &= \end{split}$$

ii) $I_{\rm H}$ =1.00 A

$$\begin{split} \sum_{i=1}^k I_{L_i} \, \tau_i &= \\ \sum_{i=1}^k I_{L_i} \, \tau_i &= \\ \sum_{i=1}^k I_{L_i}^2 \, = &\\ \sum_{i=1}^k I_{L_i}^2 &= &\\ \end{split}$$

As we know from equation, if the steady current I_H flows through the Helmholtz coils; the induced magnetic field B is constant. Calculate and compare the magnetic fields B induced by the coils. Write the unit of the magnetic field B in terms of Tesla.

Number of turns of rectangular loop is N=100, area of the loop is $A=35\times 10^{-4}~m^2$. $\left[\vec{\tau}=\vec{\mu}\times\vec{B}=NI_LAB\Rightarrow \frac{\tau}{I_L}=m\Rightarrow B=\frac{m}{N\cdot A}\right]$

i)
$$B_{0.50} = \frac{m_{0.50}}{N \cdot A} =$$

ii)
$$B_{1.00} = \frac{m_{1.00}}{N \cdot A} =$$

In order to examine torque due to a magnetic moment in a uniform magnetic field as a function of the rectangular loop current I_L , plot $\tau - I_L$ graph for each current on Helmholtz coils I_H using data sets from Tables 7.1–2. Represent the I_L values on the x-axis, while the τ values on the y-axis of your graphs. Mark the data points on your graph and draw the straight lines y = mx, where the slopes m's are calculated for each current on Helmholtz coils I_H in the previous step. Use those m values to plot the lines that are passing from the origin on your graph and observe how they fit with your experimental data points.

Why are the	slopes of the l	ines different	from each oth	er? Please expl	ain. What can you	say about the
effect of $I_{\rm L}$ or	n magnetic to	rque and mag	netic moment	of the rectangu	lar loop?	

II. Torque as a function of the current in the Helmholtz coils:

According to Equation 7.10 [$\tau = NI_LA \cdot \kappa I_H \cdot \sin \alpha = \mu \cdot B \cdot \sin \alpha$], torque is directly proportional to the inducted magnetic fields of the Helmholtz coils ($B = \kappa I_H$), hence $\tau \propto I_H$. Therefore, we expect a line in the form of y = mx, where m is the slope of the line, passing through those points and the origin. Use τ and I_H columns of Tables 7.3–4 and calculate the slope of the line by means of the statistical linear fitting method called "least squares method" its formulae are given below.

i) $I_L = 0.05 \text{ A}$

$$\sum_{i=1}^{k} I_{H_i} \tau_i = \sum_{i=1}^{k} I_{H_i} \tau_i = \sum_{i=1}^{k} I_{H_i}^2 \tau_i = \sum_{i=1}^{k} I_{H_i}^2 = \sum_{i=1}^{k} I_{H_i}^$$

ii) $I_L = 0.10 \text{ A}$

$$\begin{split} \sum_{i=1}^k I_{H_i} \, \tau_i &= \\ \sum_{i=1}^k I_{H_i} \, \tau_i &= \\ \sum_{i=1}^k I_{H_i}^2 \, \tau_i &= \\ \sum_{i=1}^k I_{H_i}^2 &= \end{split}$$

Number of turns of rectangular loop is N=100, area of the loop is $A=35\times 10^{-4}~m^2$. Calculate magnetic dipole moments (μ) of rectangular loop for the currents I_L .

$$i)\;I_L=0.05\;A\Rightarrow\;\mu_{0.05}=NI_LA=$$

ii)
$$I_L = 0.10 A \Rightarrow \mu_{0.10} = NI_L A =$$

Use Equation 7.10 [$\tau = NI_LA \cdot \kappa I_H$] and calculate the proportionality coefficients κ .

$$\left[\kappa = \left(\frac{\tau}{I_H}\right)\left(\frac{1}{NI_LA}\right) = \frac{m}{\mu}\right]$$

$$i)\; \kappa_{0.05} = \frac{m_{0.05}}{\mu_{0.05}} = \qquad \qquad ii)\; \kappa_{0.10} = \frac{m_{0.10}}{\mu_{0.10}} =$$

What is your expectation about the κ values, should the calculated κ be equal or not? If the result is different from your predictions, please explain why? What does κ represent, what is its physical meaning in the setup.

In order to examine torque due to a magnetic moment in a uniform magnetic field as a function of the Helmholtz coils current I_H , plot $\tau - I_H$ graph for each current on rectangular loop I_L using data sets from Tables 7.3–4. Represent the I_H values on the x-axis, while the τ values on the y-axis of your graphs. Mark the data points on your graph and draw the straight lines y = mx, where the slopes m's are calculated for each current on Helmholtz coils I_H in the previous step. Use those m values to plot the lines that are passing from the origin on your graph and observe how they fit with your experimental data points.

Why are the slopes of	f the lines different	from each other?	Please explain. W	hat can you say about the
effect of I_H on the ex	erted magnetic torc	que to the rectang	gular loop?	

Conclusion, Comment and Discussion:

eriment and also ex			ou have learned fr	
	-			

\sim	4 •	
<i>.</i>	HACTIANC	۰
ν,	uestions	
•		-

Obtain the	magnetic tor	eque ($\vec{\tau} = \vec{\mu}$)	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{ au} = \vec{r} \times$	$(ec{F}).$
Obtain the	magnetic tor	eque ($\vec{\tau} = \vec{\mu}$)	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($ec{ au}=ec{r}$ ×	$(ec{F}).$
Obtain the	magnetic tor	eque ($\vec{\tau} = \vec{\mu}$)	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{ au} = \vec{r} imes$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{ au} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque ($\vec{\tau} = \vec{\mu}$)	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{ au} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{ au} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	que $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	\times \vec{B}) formul	a using the t	orque formu	ıla ($\vec{\tau} = \vec{r} \times$	⟨ F).
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ala ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	\times \vec{B}) formul	a using the t	orque formu	ıla ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ala ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ala ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ala ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ala ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .
Obtain the	magnetic tor	eque $(\vec{\tau} = \vec{\mu})$	$\times \vec{B}$) formul	a using the t	orque formu	ıla ($\vec{\tau} = \vec{r} \times$	(\vec{F}) .