
Experiment No : EM6  

Experiment Name: Current Balance / Force acting on a current-carrying conductor 

Objective: To observe the force acting on the current-carrying loops with various sizes and 

shapes in a uniform magnetic field and to determine which parameters that the Lorentz force 

depends on. 

Keywords: Lorentz force, magnetic force, magnetic field, moving charges, current, right- 

hand rule. 

Theoretical Information:  

The force on a current-carrying conductor can be calculated starting with the magnetic force 

�⃗�𝐵 = 𝑞�⃗� × �⃗⃗� on a single moving charge. 

 

 
Figure 6.1: A segment of a current-carrying wire in a magnetic field 𝐵. 

Figure 6.1 shows a straight segment of a conducting wire, with length 𝐿 and cross-sectional 

area 𝐴, the current is from left to right. The wire is in a uniform magnetic field �⃗⃗�, perpendicular 

to the plane of the diagram and directed into the plane.  

The drift velocity �⃗�𝑑 is to the right and perpendicular to �⃗⃗�. The average force on each charge 

is �⃗�𝐵 = 𝑞�⃗�𝑑 × �⃗⃗� directed to the up as shown in Figure 6.1; since �⃗�𝑑 and �⃗⃗�.are perpendicular, 

the magnitude of the force is 

𝐹𝐵 = 𝑞𝑣𝐵𝑠𝑖𝑛𝜙 = 𝑞𝑣𝐵⊥ 6.1 

where 𝜙 is the smaller angle between �⃗� and �⃗⃗�.  

From Equation 6.1 the units of 𝐵 must be the same as the units of 𝐹𝑞/𝑣. Therefore, the SI unit 

of 𝐵 is equivalent to 1N⋅s/C⋅m or, since one ampere is one coulomb per second 

(1A=1C/s), 1N/A⋅m. This unit is called the Tesla (abbreviated T), in honor of Nikola Tesla 

(1856–1943), the prominent Serbian-American scientist and inventor: 
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We can derive an expression for the total force on all the moving charges in a length 𝐿 of 

conductor with cross-sectional area 𝐴. The number of charges per unit volume is 𝑛; a segment 

of conductor with length 𝐿 has volume 𝐴𝐿 and contains a number of charges equal to 𝑛𝐴𝐿. The 

total force �⃗�𝐵 on all the moving charges in this segment has magnitude 

𝐹 = (𝑛𝐴𝐿)(𝑞𝑣𝑑𝐵) = (𝑛𝑞𝑣𝑑𝐴)(𝐿𝐵) 6.2 

The current density 𝐽 is 

𝐽 =
𝐼

𝐴
= 𝑛|𝑞|𝑣𝑑 

6.3 

Therefore, from Equation 6.3, the product 𝐽𝐴 is the total current 𝐼 so we can rewrite Equation 

6.2 as 

𝐹 = 𝐼𝐿𝐵 6.4 

If the field �⃗⃗� is not perpendicular to the wire but makes an angle 𝜙 with it, only the component 

of �⃗⃗� perpendicular to the wire (and to the drift velocities of the charges) exerts a force; this 

component is 𝐵⊥ = 𝐵𝑠𝑖𝑛𝜙. The magnetic force on the wire segment is then 

𝐹 = 𝐼𝐿𝐵⊥ = 𝐼𝐿𝐵𝑠𝑖𝑛𝜙 6.5 

The force is always perpendicular to both the conductor and the field, with the direction 

determined by the right-hand rule. Hence this force can be expressed as a vector product, just 

like the force on a single moving charge. We represent the segment of wire with a vector �⃗⃗� 

along the wire in the direction of the current 𝐼, and has a magnitude equal to the length 𝐿 of the 

segment; then the force �⃗� on this segment is  

�⃗�𝐵 = 𝐼�⃗⃗� × �⃗⃗� 6.6 

Note that this expression applies only to a straight segment of wire in a uniform magnetic field. 

If the conductor is not straight, we can divide it into infinitesimal segments 𝑑𝑠. The force 𝑑�⃑� 

on each segment is 

𝑑�⃗�𝐵 = 𝐼𝑑𝑠 × �⃗⃗� 6.7 

Then we can integrate this expression along the wire to find the total force on a conductor of 

any shape. 

 

Figure 6.2: A wire segment of arbitrary shape carrying a current 𝐼 in a magnetic field 𝐵 experiences a 

magnetic force. 



To calculate the total force �⃗�𝐵 acting on the wire shown in Figure 6.2, we integrate Equation 

6.7 over the length of the wire: 

�⃗�𝐵 = 𝐼 ∫ 𝑑𝑠
𝑏

𝑎

× �⃗⃗� 6.8 

where 𝑎 and 𝑏 represent the end points of the wire. When this integration is carried out, the 

magnitude of the magnetic field and the direction the field makes with the vector 𝑑𝑠 may differ 

at different points. 

The direction of the magnetic force on current carrying wire is defined by right-hand rule. 

Figure 6.3 reviews two right-hand rules for determining the direction of the cross product 

 �⃗⃗� × �⃗⃗� and the direction of the magnetic force �⃗�𝐵 = 𝐼�⃗⃗� × �⃗⃗� acting on a wire with current 𝐼 with 

a length �⃗⃗� in a magnetic field �⃗⃗�. The rule in Figure 6.3(a) depends on right-hand rule for the 

cross product. The fingers point in the direction of �⃗⃗�, where �⃗⃗� is a vector that points in the 

direction of the current 𝐼, with �⃗⃗� coming out of your palm, so that you can curl your fingers in 

the direction of �⃗⃗�. The direction of �⃗⃗� × �⃗⃗�, and the force on the wire, is the direction in which 

the thumb points. An alternative rule is shown in Figure 6.3(b). In this rule, the vector �⃗⃗� is in 

the direction of your thumb and �⃗⃗� in the direction of your fingers. The force �⃗�𝐵 on the wire is 

in the direction of your palm, as if you are pushing the wire with your hand.  

 

Figure 6.3: Illustrations of the right-hand rules. 
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