
Experiment No : EM5 

Experiment Name: Magnetic Fields of Solenoids / Biot-Savart Law 

Objective: Establish a relationship for how the magnetic field of a solenoid varies with current, 

distance and number of turns per unit length by using the Biot-Savart law. 

1. The dependence of the magnetic field on the current passing through the solenoids: 

2. The dependence of the magnetic field on the number of turns per unit length of solenoid: 

3. The dependence of the magnetic field on the distance from center of the solenoid: 
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Theoretical Information:  

A solenoid is a long wire wound in the form of a helix. With this configuration, a reasonably uniform 

magnetic field can be produced in the space surrounded by the turns of wire−which we shall call the 

interior of the solenoid−when the solenoid carries a steady current. When the turns are closely spaced, 

each can be approximated as a circular loop, and the net magnetic field is the vector sum of the fields 

resulting from all the turns. 

Figure 5.1 (left) shows the magnetic field lines surrounding a loosely wound solenoid. Note that the field 

lines in the interior are nearly parallel to one another, are uniformly distributed, and are close together, 

indicating that the field in this space is strong and almost uniform. 

 

Figure 5.1: (Left) The magnetic field lines for a loosely wound solenoid. (Right) Magnetic field lines 

for a tightly wound solenoid of finite length. 

If the turns are closely spaced and the solenoid is of finite length, the magnetic field lines are as shown 

in Figure 5.1 (right). This field line distribution is similar to that surrounding a bar magnet. Hence, one 

end of the solenoid behaves like the north pole of a magnet, and the opposite end behaves like the south 

pole.  

As the length of the solenoid increases, the interior field becomes more uniform and the exterior field 

becomes weaker. An ideal solenoid is approached when the turns are closely spaced and the length is 

much greater than the radius of the turns (𝐿 ≫ 𝑅). Figure 5.2 shows a longitudinal cross section of part 

of such a solenoid carrying a current 𝐼. In this case, the external field is close to zero, and the interior 

field is uniform over a great volume.  



 

Figure 5.2: (Left) Magnetic field lines for a tightly wound ideal solenoid (𝐿 ≫ 𝑅) of infinite length, 

carrying a steady current. (Right) Cross-sectional view of an ideal solenoid. 

We can use Ampère’s law to obtain a quantitative expression for the interior magnetic field in an ideal 

solenoid. Because the solenoid is ideal, �⃗�  in the interior space is uniform and parallel to the axis, and the 

magnetic field lines in the exterior space form circles around the solenoid. The planes of these circles are 

perpendicular to the page. 

The general case, known as Ampère’s law, can be stated as follows: The line integral of �⃗⃗� ⋅𝑑𝑠  around any 

closed path equals 𝜇0𝐼𝑒𝑛𝑐𝑙, where 𝐼 is the total enclosed steady current passing through any surface 

bounded by the closed path. 

∮�⃗� ⋅𝑑𝑠 = 𝜇0𝐼𝑒𝑛𝑐𝑙 5.1 

Consider the rectangular (an amperian loop) path of length 𝐿 and width 𝑤 shown in Figure 5.2 (right). 

We can apply Ampère’s law to this path by evaluating the integral of �⃗⃗� ⋅𝑑𝑠  over each side of the rectangle. 

The contribution along side 3 is zero because the magnetic field is zero outside the solenoid. The 

contributions from sides 2 and 4 are both zero, because �⃗�  is perpendicular to 𝑑𝑠  along these paths, both 

inside and outside the solenoid. Side 1 gives a contribution to the integral because along this path �⃗�  is 

uniform and parallel to 𝑑𝑠 , that is, the only contribution comes from path 1. 
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If 𝑁 is the number of turns in the length 𝐿, the total current through the rectangle is 𝑁𝐼. Therefore, 

Ampère’s law applied to this path gives 

∮�⃗� ⋅𝑑𝑠 = 𝐵𝐿 = 𝜇0𝑁𝐼 ⟹ 𝐵 = 𝜇0

𝑁

𝐿
𝐼 = 𝜇0𝑛𝐼 5.2 

where 𝑛 = 𝑁 𝐿⁄  is the number of turns per unit length. 

 

 

 



For infinitely long solenoids (𝐿 ≫ 𝑅), the magnetic field inside the solenoid is given by Equation 5.2, 

and is constant along the axis of the solenoid. However, the magnetic field depends on the position of 

the point on axis of the finite size solenoid (𝐿~𝑅). When the turns are closely spaced, each can be 

approximated as a circular loop, and the net magnetic field is the vector sum of the fields resulting from 

all the turns. 

 
Figure 5.3: Finite size solenoid. 

Consider a section of the solenoid of length 𝑑𝑥′. The total current winding around the solenoid in that 

section is 𝑑𝐼 = 𝑛𝐼𝑑𝑥′. This section is located at a distance 𝑥 − 𝑥′ away from the point 𝑃. The contribution 

to the magnetic field at 𝑃 due to this subset of loops is 
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Integrating over the entire length of the solenoid, we obtain 
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Equation 5.4 expresses the change of magnetic field depending on the distance from the center. 
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