
Experiment No : EM4 

Experiment Name: Magnetic Fields of Single Coils / Biot-Savart’s Law 

Objective: Establish a relationship for how the magnetic field of a circular conducting loops varies 

with current, radius and distance from the axis by using the Biot-Savart law. 

1. The dependence of the magnetic field on the current passing through the conducting ring, 

2. The dependence of the magnetic field on the radius of the conducting rings, 

3. The dependence of the magnetic field on the distance from center of the conducting ring. 
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Theoretical Information:  

We have seen that mass produces a gravitational field and also interacts with that field. Charge produces 

an electric field and also interacts with that field. Since moving charge (that is, current) interacts with a 

magnetic field, we might expect that it also creates that field−and it does. 

The equation used to calculate the magnetic field produced by a current is known as the Biot-Savart law. 

It is an empirical law named in honor of two scientists Jean-Baptiste Biot (1774–1862) and Félix Savart 

(1791–1841) who investigated the interaction between a straight, current-carrying wire and a permanent 

magnet. From their experimental results, Biot and Savart arrived at a mathematical expression that gives 

the magnetic field at some point in space in terms of the current that produces the field. 

 

Figure 4.1: The magnetic field 𝑑𝐵⃗  at a point due to the current 𝐼 through a length element 𝑑𝑠 . 

This law enables us to calculate the magnitude and direction of the magnetic field produced by a steady 

current 𝐼 in a wire. The Biot-Savart law states that at any point 𝑃, the magnetic field 𝑑𝐵⃗  due to an element 

𝑑𝑠  of a current-carrying wire is given by 

𝑑𝐵⃗ =
𝜇0

4𝜋

𝐼 𝑑𝑠 × 𝑟̂

𝑟2
 

4.1 

where, 𝑟̂ is the unit vector and 𝑑𝑠  is a vector with length 𝑑𝑠, in the same direction as the current in the 

conductor. The constant 𝜇0is known as the permeability of free space and is exactly 

𝜇0 = 4𝜋 × 10−7 = 1.26 × 10−6  T⋅m/A 

in the SI system. 



Equation 4.1 is called the Biot-Savart law. Note that the field 𝑑𝐵⃗  in Equation 4.1 is the field created by 

the current in only a small length element 𝑑𝐬 of the conductor. To find the total magnetic field 𝐵⃗  created 

at some point by a current of finite size, we must sum up contributions from all current elements 𝐼 𝑑𝐬 

that make up the current. That is, we must evaluate 𝐵⃗  by integrating Equation 4.1: 

𝐵⃗ =
𝜇0

4𝜋
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4.2 

where the integral is taken over the entire current distribution. This expression must be handled with 

special care because the integrand is a cross product and therefore a vector quantity. We shall see one 

case of such an integration in following circular wire loop. 

Consider a circular wire loop of radius 𝑅 located in the 𝑦𝑧 plane and carrying a steady current 𝐼, as in 

Figure 4.2. We can use the Biot-Savart law to find the magnetic field due to the current 𝐼 at an axial point 

𝑃 a distance 𝑥 from the center of the loop 

 
Figure 4.2: Geometry for calculating the magnetic field at a point 𝑃 lying on the axis of a current loop. 

In this situation, every length element 𝑑𝐬 is perpendicular to the vector 𝑟̂ at the location of the element. 

Thus, for any element, |𝑑𝑠 × 𝑟̂| = 𝑑𝑠 ⋅ 1 ⋅ sin (
𝜋

2
) = 𝑑𝑠. Furthermore, all length elements around the 

loop are at the same distance 𝑟 from 𝑃, where 𝑟2 = 𝑥2 + 𝑅2. Hence, the magnitude of 𝑑𝐵⃗  due to the 

current in any length element 𝑑𝑠 is  

𝑑𝐵⃗ =
𝜇0𝐼

4𝜋

|𝑑𝑠 × 𝑟̂|

𝑟2
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4.3 

The direction of 𝑑𝐵⃗  is perpendicular to the plane formed by 𝑟̂ and 𝑑𝑠 , as shown in Figure 4.2. We can 

resolve this vector into a component 𝑑𝐵𝑥 along the 𝑥 axis and a component 𝑑𝐵𝑦 perpendicular to the 𝑥 

axis. When the components 𝑑𝐵𝑦 are summed over all elements around the loop, the resultant component 

is zero. That is, by symmetry the current in any element on one side of the loop sets up a perpendicular 

component of 𝑑𝐵⃗  that cancels the perpendicular component set up by the current through the element 



diametrically opposite it. Therefore, the resultant field at 𝑃 must be along the 𝑥 axis and we can find it 

by integrating the components 𝑑𝐵𝑥 = 𝑑𝐵𝑐𝑜𝑠𝜃. That is, 𝐵⃗ = 𝐵𝑥î where 

𝑑𝐵𝑥 = ∮𝑑𝐵𝑐𝑜𝑠𝜃 =
𝜇0𝐼
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and we must take the integral over the entire loop. Because 𝜃, 𝑥, and 𝑅 are constants for all elements of 

the loop and because 𝑐𝑜𝑠𝜃 = 𝑅/(𝑥2 + 𝑅2)1/2 , we obtain 

𝐵𝑥 =
𝜇0𝐼𝑅

4𝜋(𝑥2 + 𝑅2)3/2
∮𝑑𝑠 =

𝜇0𝐼𝑅
2

2(𝑥2 + 𝑅2)3/2
 

4.5 

where we have used the fact that ∮𝑑𝑠 = 2𝜋𝑅 (the circumference of the loop). 

To find the magnetic field at the center of the loop, we set 𝑥 = 0 in Equation 4.5. At this special point, 

therefore, 

𝐵 =
𝜇0𝐼

2𝑅
 

4.6 

The pattern of magnetic field lines for a circular current loop is shown in Figure 4.3. For clarity, the lines 

are drawn for only one plane−one that contains the axis of the loop. 

 
Figure 4.3: Magnetic field lines surrounding a current loop. 
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