
Experiment No : EM3 

Experiment Name: Verifying Ohm’s law and measuring specific resistances 

Objective:  

1. Verifying Ohm’s law and determining the resistances. 

2. Measuring the voltage and the current on four constantan wires with different cross-sectional 

areas. 

3. Measuring the voltage and the current on two constantan wires with different lengths. 

4. Measuring the voltage and the current on constantan and messing wires. 
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Theory:  

We can relate current to the motion of the charge carriers by describing a microscopic model of 

conduction in a metal. Consider the current in a conductor of cross-sectional area A (Figure 3.1).  

 
Figure 3.1: A section of a uniform conductor of cross-sectional area A. 

 

The volume of a section of the conductor of length 𝛥𝑥 (the gray region shown in Fig. 3.1 ) is 𝐴𝛥𝑥. If n 

represents the number of mobile charge carriers per unit volume (in other words, the charge carrier 

density), the number of carriers in the gray section is 𝑛𝐴𝛥𝑥. Therefore, the total charge 𝛥𝑄 in this section 

is 

𝛥𝑄 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ×  𝑐ℎ𝑎𝑟𝑔𝑒 𝑝𝑒𝑟 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 =  (𝑛𝐴𝛥𝑥)𝑞 3.1 

where q is the charge on each carrier. If the carriers move with a speed 𝑣𝑑, the displacement they 

experience in the 𝑥 direction in a time interval 𝛥𝑡 is 𝛥𝑥 = 𝑣𝑑𝛥𝑡. Let us choose ∆𝑡 to be the time interval 

required for the charges in the cylinder to move through a displacement whose magnitude is equal to the 

length of the cylinder. This time interval is also required for all of the charges in the cylinder to pass 

through the circular area at one end. With this choice, we can write 𝛥𝑄 in the form 

𝛥𝑄 =  (𝑛𝐴𝑣𝑑𝛥𝑡)𝑞 3.2 

If we divide both sides of this equation by 𝛥𝑡, we see that the average current in the conductor is 

𝐼𝑎𝑣 =
𝛥𝑄

𝛥𝑡
= 𝑛𝑞𝑣𝑑𝐴 3.3 



We know that the electric field inside a conductor is zero. However, this statement is true only if the 

conductor is in static equilibrium. The purpose of this section is to describe what happens when the 

charges in the conductor are not in equilibrium, in which case there is an electric field in the conductor.  

Consider a conductor of cross-sectional area A carrying a current I. The current density J in the conductor 

is defined as the current per unit area. Because the current 𝐼 =  𝑛𝑞𝑣𝑑𝐴, the current density is 

𝐽 ≡
𝐼

𝐴
= 𝑛𝑞𝑣𝑑 3.4 

where J has SI units of A/m2. This expression is valid only if the current density is uniform and only if 

the surface of cross-sectional area A is perpendicular to the direction of the current. In general, the current 

density is a vector quantity: 

𝐽 = 𝑛𝑞�⃗�𝑑 3.5 

From this equation, we see that current density is in the direction of charge motion for positive charge 

carriers and opposite the direction of motion for negative charge carriers. 

A current density 𝐽 and an electric field �⃗⃗� are established in a conductor whenever a potential difference 

is maintained across the conductor. In some materials, the current density is proportional to the electric 

field: 

𝐽 = 𝜎�⃗⃗� 3.6 

where the constant of proportionality σ is called the conductivity of the conductor. Materials that obey 

Equation 3.6 are said to follow Ohm’s law, named after Georg Simon Ohm (1789–1854). More 

specifically, Ohm’s law states that for many materials (including most metals), the ratio of the current 

density to the electric field is a constant σ that is independent of the electric field producing the current. 

Materials that obey Ohm’s law and hence demonstrate this simple relationship between �⃗⃗� and 𝐽 are said 

to be ohmic. Experimentally, however, it is found that not all materials have this property. Materials and 

devices that do not obey Ohm’s law are said to be nonohmic. Ohm’s law is not a fundamental law of 

nature but rather an empirical relationship valid only for certain materials.  

We can obtain an equation useful in practical applications by considering a segment of straight wire of 

uniform cross-sectional area A and length l, as shown in 

 

Figure 3.2: A uniform conductor of length l and cross-sectional area 𝐴. A potential difference 

 𝛥𝑉 = 𝑉𝑏 – 𝑉𝑎 maintained across the conductor sets up an electric field �⃗⃗�, and this field produces a 

current I that is proportional to the potential difference. 



In Figure 3.2, a potential difference 𝛥𝑉 = 𝑉𝑏 – 𝑉𝑎 is maintained across the wire, creating in the wire an 

electric field and a current. If the field is assumed to be uniform, the potential difference is related to the 

field through the relationship 

𝑉𝑎 − 𝑉𝑏 = − ∫ �⃗⃗�
𝑏

𝑎

⋅𝑑𝑠 = 𝐸 ∫ 𝑑𝑥
𝑙

0

= 𝐸𝑙 ⇒ 𝛥𝑉 = 𝐸𝑙 3.7 

Therefore, we can express the magnitude of the current density in the wire as 

𝐽 = 𝜎𝐸 = 𝜎
𝛥𝑉

𝑙
 3.8 

Because 𝐽 = 𝐼/𝐴, we can write the potential difference as 

𝛥𝑉 =
𝑙

𝜎
𝐽 = (

𝑙

𝜎𝐴
) 𝐼 = 𝑅𝐼 3.9 

The quantity 𝑅 = 𝑙/𝜎𝐴 is called the resistance of the conductor. We can define the resistance as the ratio 

of the potential difference across a conductor to the current in the conductor: 

𝑅 ≡
𝛥𝑉

𝐼
 3.10 

We will use this equation over and over again when studying electric circuits. From this result we see 

that resistance has SI units of volts per ampere. One volt per ampere is defined to be one ohm (Ω): 

1𝛺 ≡
1𝑉

1𝐴
 3.11 

This expression shows that if a potential difference of 1 V across a conductor causes a current of 1 A, the 

resistance of the conductor is 1Ω. The inverse of conductivity is resistivity ρ: 

𝜌 =
1

𝜎
 3.12 

where ρ has the units ohm-meters (Ω.m). Because 𝑅 = 𝑙/𝜎𝐴, we can express the resistance of a uniform 

block of material along the length l as 

𝑅 = 𝜌
𝑙

𝐴
 3.13 
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