
 

Experiment No : EM1 

Experiment Name: Capacitance of metal spheres and of a spherical capacitor 

Objective: 
1. Determination of the capacitance of two metal spheres with different diameters. 

2. Determination of the capacitance of a spherical capacitor. 
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Theoretical Information: 

The circuit element for charge storage is called as a capacitor. The capacity of a capacitor is called 

capacitance. Capacitance is the ability to store electric charge. Every object that can be charged with 

electricity has a capacity. 

 

Figure 1.1: A simple capacitor 

Consider two conductors carrying charges of equal magnitude and opposite sign, as shown in Figure 1.1. 

Such a combination of two conductors is called a capacitor. A potential difference ΔV exists between the 

conductors due to the presence of the charges. What determines how much charge is on the plates of a 

capacitor for a given voltage? Experiments show that the quantity of charge Q on a capacitor is linearly 

proportional to the potential difference between the conductors; that is,  𝑄 ∝ 𝛥𝑉 The proportionality 

constant depends on the shape and separation of the conductors. The capacitance of a capacitor is the 

amount of charge the capacitor can store per unit of potential difference. We can write this relationship 

as 𝑄 = 𝐶𝛥𝑉 if we define capacitance as follows: The capacitance C of a capacitor is defined as the ratio 

of the magnitude of the charge on either conductor to the magnitude of the potential difference between 

the conductors: 𝐶 = 𝑄 𝛥⁄ 𝑉 Therefore, capacitance is a measure of a capacitor’s ability to store charge. 

In other words, the capacitance of a capacitor is the amount of charge the capacitor can store per unit of 

potential difference. 

The SI unit of capacitance is the farad (F), which was named in honor of Michael Faraday. [1 Farad = 

Coulomb/Volt] The farad is a very large unit of capacitance. In practice, typical devices have capacitance 

ranging from (1μF =10‒6 F), nanofarad (1nF =10‒9 F) to pikofarad (1pF =10‒12 F). 

In electrical circuits, the term capacitance is usually a shorthand for the mutual capacitance between two 

adjacent conductors, such as the two parallel plates of a capacitor, or a spherical capacitor with two 

concentric spherical shells. However, for an isolated conductor there also exists a property called self-

capacitance, which is the amount of electric charge that must be added to an isolated conductor to raise 

its electric potential by one unit. 



 

For example, consider an isolated charged spherical conductor. The electric field lines around this 

conductor are exactly the same as the shell system, which is concentric with the same sphere with an 

infinite radius and carries an equal-magnitude, but opposite-labeled charge. Thus, we can imagine that 

this sphere is the second conductor of a two-conductor concealed imaginary shell. The capacitance for 

this case is calculated as follows  

 

Figure 1.2: Representation of Gaussian spheres drawn for a conductive sphere 

The electric field is constant and perpendicular to the surface of the sphere at each point, thus the electric 

field vector 𝐸⃗  and the area vector 𝑑𝐴  are parallel to each other. By taking the integral over the entire 

surface, we can write the electric flux as: 𝜙𝐸 = 𝐸⃗ ⋅ 𝐴 = 𝐸𝐴 on the surface. If we apply the Gauss's law 

for the spherical Gaussian surface for radius r<a, which is concentric with the conductive spherical shell 

as shown in Fig. 1.2(c), we can see from Equation 1.1 that the electric field is equal to zero for r<a, since 

there is no charge in the conductive sphere. 

𝜙𝐸 = 𝐸⃗ ⋅ 𝐴 = 𝐸𝐴 =
𝑞𝑒𝑛𝑐

𝜀0
= 0 1.1 

On the other hand, because of the spherical symmetry of the charge distribution, the field outside is the 

same as, due to a point charge Q located at the center of the shell. Therefore, outside of the conductive 

sphere, r > a, the electric field flux is; 

𝜙𝐸 = ∮ 𝐸⃗ ⋅ 𝑑𝐴 = ∮𝐸 𝑑𝐴 =
𝑞𝑒𝑛𝑐

𝜀0
=

𝑄

𝜀0
 1.2 

The electric field is constant and perpendicular to the surface of the sphere at each point, thus the electric 

field vector 𝐸⃗  and the area vector d𝐴  are parallel to each other. By taking the integral over the entire 

surface, we can write the electric flux as: 

𝜙𝐸 = ∮𝐸⃗ 𝑑 ⋅ 𝐴 = 𝐸 ∮𝑑𝐴 = 𝐸(4𝜋𝑟2) =
𝑄

𝜀0
⇒ 𝐸 =

𝑄

4𝜋𝜀0𝑟2
 1.3 

 



 

We can calculate the potential difference ΔV from the electric field E obtained from Equation 1.3; 

𝛥𝑉 = −∫ 𝐸⃗ ⋅ 𝑑𝑟 
∞

𝑅
= −∫

𝑄

4𝜋𝜀0𝑟2 𝑟 ⋅ 𝑑𝑟 
∞

𝑅
= −

𝑄

4𝜋𝜀0
∫ 𝑟−2∞

𝑅
𝑑𝑟  

= −
𝑄

4𝜋𝜀0
[
1

∞
−

1

𝑅
] =

𝑄

4𝜋𝜀0𝑅
 

1.4 

If this expression is substituted in the capacitance expression, the capacitance of an isolated charged 

spherical conductor shell is; 

𝐶 =
𝑄

𝛥𝑉
= 4𝜋𝜀0𝑅 1.5 

The potential difference ΔV of a spherical capacitor can be calculated by changing the boundaries of the 

integral in Equation 1.4. If the calculation is repeated with appropriate boundary condition, the result is; 

𝛥𝑉 = −∫ 𝐸⃗ ⋅ 𝑑𝑟 
𝑅2

𝑅2
= −∫

𝑄

4𝜋𝜀0𝑟2 𝑟 ⋅ 𝑑𝑟 
𝑅2

𝑅1
= −

𝑄

4𝜋𝜀0
∫ 𝑟−2𝑅2

𝑅1
𝑑𝑟  

= −
𝑄

4𝜋𝜀0
[
1

𝑅2
−

1

𝑅1
] =

𝑄

4𝜋𝜀0
[
𝑅2 − 𝑅1

𝑅1𝑅2
] 

1.6 

If the expression received from Equation 1.6 is substituted into  C =
Q

ΔV
 , for a spherical capacitor, the 

capacitance is; 

𝐶 = 4𝜋𝜀0 [
𝑅1𝑅2

𝑅2 − 𝑅1
] 1.7 

The results show that the capacitance of an isolated charged sphere and a spherical capacitor are 

proportional to its radius and the capacitance is independent of both charge Q on the sphere and the 

potential difference ΔV. 

 


