Experiment No : M4

Experiment Name: Hooke's Law

Objective:

1. Determining the change of length ΔL of two helical springs with different turn diameters as a function of the gravitational force F exerted by the suspended weights.
2. Confirming Hooke's law and determining the spring constants k of the two helical springs.

Keywords: Hooke's law, spring constant, oscillation, period.

Theoretical Information:

Holding a spring in either its compressed or stretched position requires that someone or something exerts a force on the spring. This force is directly proportional to the displacement, Δx, of the spring. In turn, the spring will exert an equal and opposite force

$$
F=-k \Delta x
$$

where k is called the "spring constant." This is often referred to as a "restoring force" because the spring exerts a force in the direction opposite to the displacement, indicated by the negative sign. The Eq. 10.1 is known as Hooke's law.

Simple harmonic motion will occur whenever there is a restoring force that is proportional to the displacement from equilibrium, as is in Hooke's law. From Newton's second law, $F=m a$, and recognizing that the acceleration a is the second derivative of displacement with respect to time. The classical equation of motion for a one-dimensional simple harmonic oscillator with a particle of mass m attached to a spring having spring constant k is the Eq. 10.1 can be rewritten as;

$$
F=-k x \Rightarrow m \frac{d^{2} x}{d^{2} t}=-k x
$$

which can be written in the standard wave equation form;

$$
m \frac{d^{2} x}{d^{2} t}+k x=0
$$

The Eq. 10.3 is a linear second-order differential equation that can be solved by the standard method of factoring and integrating. The resulting solution to Eq. 10.3 is

$$
x(t)=x_{0} \sin (\omega t+\phi)
$$

where x_{0} is the amplitude of oscillation and

$$
\omega=\sqrt{\frac{k}{m}}
$$

The equations in the form of Eq. 10.4 describe what is called simple harmonic motion. The period T, the frequency f, and the constant ω are related by:

$$
\omega=2 \pi f=2 \pi / T
$$

Thus, the period of oscillation T is given by

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Note that T does not depend upon the amplitude x_{0} of oscillation. Therefore, if a mass is hung from a spring suspended from the vertical, the resulting period of oscillation T would be proportional to the spring constant k and square root of the attached mass m.

