Prof. Dr.
Oğul ESEN
Mathematics
- Phone
- +90 (262) 605 1386
- oesen@gtu.edu.tr
- Office
- Business Administration Building, Z 42
- Areas of interest
- Geometric Mechanics
Papers
2022
- Esen, O., Fernández‐Saiz, E., Sardón, C. and Zając, M. (2022). A generalization of a SIS epidemic model with fluctuations. Mathematical Methods in the Applied Sciences, 45(7), 3718-3731.
- Esen, O., de León, M., Lainz, M., Sardón, C., and Zając, M. (2022). Reviewing the Geometric Hamilton-Jacobi Theory concerning Jacobi and Leibniz identities. arXiv preprint arXiv:2202.06896..
- Esen, O., Grmela, M. and Pavelka, M. (2022). On the role of geometry in statistical mechanics and thermodynamics I: Geometric perspective. arXiv preprint arXiv:2205.10315.
- Esen, O., Grmela, M. and Pavelka, M. (2022). On the role of geometry in statistical mechanics and thermodynamics II: Thermodynamic perspective. arXiv preprint arXiv:2205.10392.
- Ateşli, B., Esen, O., de León, M., and Sardón, C. (2022). On Locally Conformally Cosymplectic Hamiltonian Dynamics and Hamilton-Jacobi Theory. arXiv preprint arXiv:2205.13329.
2021
- Ateşli B., Esen, O., Sütlü, S. (2021) Cohomologies and generalized derivation extensions of n-Lie algebras, arXiv preprint arXiv:2104.08871.
- Esen, O., Guha, P., Sütlü, S. (2021) Bicocycle Double Cross Constructions, arXiv preprint arXiv:2104.08973.
- Esen, O., Guha, P., Gümral, H. (2021). 3D-flows Generated by the Curl of a Vector Potential and Maurer-Cartan Equations. arXiv preprint arXiv:2103.15058.
- Esen, O., Muñoz, C. S., Zajac, M. (2021). Matched Pair Analysis of Euler-Poincar\'{e} Flow on Hamiltonian Vector Fields. arXiv preprint arXiv:2103.04401.
- Esen, O., de León, M., Sardón, C., Zajac, M. (2021). Hamilton–Jacobi formalism on locally conformally symplectic manifolds. Journal of Mathematical Physics, 62(3), 033506.
- Esen, O. Guha P., H. Gümral, (2021). On Geometrical Couplings of Dissipation and Curl Forces. arXiv preprint arXiv:2101.11884.
- Esen, O., Gümral, H., Sütlü, S. (2021). Tulczyew triplets for lie groups III: Higher order dynamics and reductions for iterated bundles. arXiv preprint arXiv:2102.10807.
- Esen, O., Kudeyt, M., Sütlü, S. (2021) Second order Lagrangian dynamics on double cross product groups. Journal of Geometry and Physics, 159, 1-18.
- Esen, O., de León, M., Sardón, C., Zając, M. (2021). The Globalization Problem of the Hamilton–DeDonder–Weyl Equations on a Local k-Symplectic Framework. Mediterranean Journal of Mathematics, 18(1), 1-25.
- Esen, O., Sütlü S. (2021) Discrete dynamical systems over double cross product Lie groupoids, International Journal of Geometric Methods in Modern Physics, DOI: 10.1142/S0219887821500572
- Vágner, P., Pavelka, M., Esen, O. (2021). Multiscale thermodynamics of charged mixtures. Continuum Mechanics and Thermodynamics 33(1) 237-268.
- Esen, O., Ozcan G., Sütlü S. (2021) On Extensions, Lie-Poisson Systems , and Dissipations, arXiv:2101.03951
2020
- O. Esen, E. Fernández-Saiz, C.Sardón, M. Zając, Geometry and solutions of an epidemic SIS model permitting fluctuations and quantization, arXiv:2008.02484
- F. Çağatay Uçgun, O. Esen and H. Gümral (2020) Reductions of Topological Massive Gravity II: First Order Realizations of Second Order Lagrangians,Journal of Mathematical Physics 61, 073504.
- Esen, O., Kudeyt, M., Sütlü, S. (2020). Tulczyjew's Triplet with an Ehresmann connection I: Trivialization and Reduction. arXiv preprint arXiv:2007.11662.
- O. Esen, S Sütlü (2020), Matched pair analysis of the Vlasov plasma, arXiv:2004.12595.
- O. Esen, D. Han, T. Şengül, Q. Wang (2020), On the nonlinear stability and the existence of selective decay states of 3D-quasi-geostrophic potential vorticity equation. Math Meth Appl Sci. 43:822–846
- O. Esen, M. de León, C. Sardón (2020), A Hamilton-Jacobi formalism for higher order implicit Lagrangians, J. Phys. A: Math. Theor. 53 075204
- J. Śniatycki, O. Esen, (2020). De Donder Form for Second Order Gravity. Journal of Geometric Mechanics 12(1): 85-106.
- O. Esen, P. Guha (2020) On the quest for generalized Hamiltonian descriptions of 3D-flows generated by curl of a vector potential. International Journal of Geometric Methods in Modern Physics, doi.org/10.1142/S0219887820500425.
- O. Esen, M. de León, C. Sardón, M. Zajac (2020), Cauchy data space and multisymplectic formulation of conformal classical field theories, arXiv:2002.03913.
2019
- O. Esen, de León M., Sardón C., M. Zajac (2019), Hamilton-Jacobi Formalism on Locally Conformally Symplectic Manifolds, arXiv:1910.02016.
- O. Esen, Jiménez V. M., de León M., Sardón C., (2019) Reduction of a Hamilton – Jacobi Equation for Nonholonomic Systems, Regular and Chaotic Dynamics, vol.24, no. 5, pp.525-559.
- O. Esen; Grmela, M.; Gümral, H.; Pavelka, M. (2019) Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy, 21, 90
2018
- F. Çağatay Uçgun, O. Esen and H. Gümral (2018) Reductions of Topologically Massive Gravity I: Hamiltonian Analysis of The Second Order Degenerate Lagrangians,Journal of Mathematical Physics; Volume 59, Issue 1, 10.1063/1.5021948.
- O. Esen, Guha, P. (2018). On time-dependent Hamiltonian realizations of planar and nonplanar systems, Journal of Geometry and Physics,10.1016/j.geomphys.2018.01.024
- O. Esen, M. de León, and C. Sardón (2018), A Hamilton-Jacobi theory for implicit differential systems, Journal of Mathematical Physics 59, 022902,
- O. Esen, Guha, P. (2018) On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291
2017
- O. Esen and S. Sütlü, (2017), Lagrangian Dynamics on Matched Pairs, Journal of Geometry and Physics, Volume 111, Pages 142–157.
- O. Esen, M. Pavelka, M. Grmela (2017), Hamiltonian coupling of electromagnetic field and matter, Int J Adv Eng Sci Appl Math, DOI 10.1007/s12572-017-0179-4.
- O.Esen and H. Gümral, (2017), Tulczyjew's Triplet for Lie Groups II: Journal of Lie Theory, Journal of Lie Theory 27, No. 2, 329--356.
- O. Esen, A. G. Choudhury and P. Guha, (2017) On Integrals, Hamiltonian and Metriplectic Formulations of 3D Polynomial Systems, Theoretical and Applied Mechanics, 44 (1), 15-34.
- O. Esen, (2017), Dinamik Sistemlerin Eşlenmesi, Sakarya Üni. Fen Bilimleri Enstitüsü dergisi 21 (3), 469-480.
2016
- O. Esen, A. G. Choudhury, P. Guha, H. Gümral, (2016), Superintegrable Cases of Four-Dimensional Dynamical Systems, Regular and Chaotic Dynamics, Vol 21, Issue 2, pp. 175-188160;
- M. Pavelka, V. Klika, O. Esen and M. Grmela, (2016), A hierarchy of Poisson brackets in non-equilibrium thermodynamics, Physica D Volume 335, Pages 54–69.
- O. Esen and S. Sütlü, (2016), Hamiltonian Dynamics on Matched Pairs, International Journal of Geometric Methods in Modern Physics, Int. J. Geom. Methods Mod. Phys. 13, 1650128.
- O. Esen, A. G. Choudhury and P. Guha, (2016) Bi-Hamiltonian Structures of 3D Chaotic Dynamical Systems, International Journal of Bifurcation and Chaos. Volume 26, Issue 13, 1650215.
2015
- O.Esen and H. Gümral, (2015), Reductions of Dynamics on Second Iterated Bundles of Lie Groups arXiv:1503.06568.
2014
- O. Esen and H. Gümral, (2014), "Tulczyjew's Triplet for Lie Groups I: Trivializations and Reductions", Journal of Lie Theory, Volume: 24, pp. 1115-1160.
2013
- O. Esen ve H. Gümral, (2013), Kontakt Parçacıkların Kinetik Denklemleri, XVII. Ulusal Mekanik Kongresi Bildiriler Kitabı, sf. 370-378.
2012
- O. Esen and H. Gümral, (2012), Geometry of Plasma Dynamics: Lie algebra of Hamiltonian vector fields, Journal of Geometric Mechanics, Volume: 4 Issue: 3, pp. 239-269.;
- O. Esen and H. Gümral, (2012), Lie Algebra of Hamiltonian Vector Fields and Poisson-Vlasov Equations, arXiv: 1203.1437.
2011
- O. Esen and H. Gümral, (2011), Lifts, Jets and Reduced dynamics, International Journal of Geometric Methods in Modern Physics, Volume: 8, Issue: 2, pp. 331-344.
2010
- O. Esen, (2010), Taşınım, Ayrışım ve Momentum Vlasov denklemleri, XVI. Ulusal Mekanik Kongresi Bildiriler Kitabı, sf. 581-590.
- GTU 101 Extracurricular Activities
- MATH 407 Differential Geometry
- MATH 432 Mathematics of Financial Derivatives
- MATH 447 Tensor Analysis
- MATH 450 Rational Mechanics
- MATH 590 Introduction to Hamiltonian Formulation of Differential Equations
- MATH 595 Tensor Analysis and General Relativity
- MATH 685 Geometric Mechanics
- MATH 690 Exterior Form Analysis
Ph.D. Thesis (Completed. 2017) Filiz Çağatay Uçgun, On geometry of degenerate second order Lagrangians. (YU)
Ph.D. Thesis, Begüm Ateşli (ongoing), GTU
Ph.D. Thesis, Ayten Gezici, (ongoing), GTU
MS Thesis,Tuğba Davşan, (ongoing), GTU
- Third Cycle (Doctoral): Yeditepe University, 2010
- Second Cycle (Master's): Yeditepe University, 2006
- First Cycle (Undergraduate): Boğaziçi University, 2002
Projects
TUBİTAK 3501: 117F426: Proje yöneticisi ve araştırmacısı: Eşlenmiş Lagrange Ve Hamilton Sistemleri (2018-2021)
TUBİTAK 3501: 117F426: Proje yöneticisi ve araştırmacısı: Eşlenmiş Lagrange Ve Hamilton Sistemleri (2018-2021)